Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(1): e14362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991424

RESUMO

Impranil® DLN-SD is a poly(ester-urethane) (PEU) that is widely used as coating material for textiles to fine-tune and improve their properties. Since coatings increase the complexity of such plastic materials, they can pose a hindrance for sustainable end-of-life solutions of plastics using enzymes or microorganisms. In this study, we isolated Halopseudomonas formosensis FZJ due to its ability to grow on Impranil DLN-SD and other PEUs as sole carbon sources. The isolated strain was exceptionally thermotolerant as it could degrade Impranil DLN-SD at up to 50°C. We identified several putative extracellular hydrolases of which the polyester hydrolase Hfor_PE-H showed substrate degradation of Impranil DLN-SD and thus was purified and characterized in detail. Hfor_PE-H showed moderate temperature stability (Tm = 53.9°C) and exhibited activity towards Impranil DLN-SD as well as polyethylene terephthalate. Moreover, we revealed the enzymatic release of monomers from Impranil DLN-SD by Hfor_PE-H using GC-ToF-MS and could decipher the associated metabolic pathways in H. formosensis FZJ. Overall, this study provides detailed insights into the microbial and enzymatic degradation of PEU coatings, thereby deepening our understanding of microbial coating degradation in both contained and natural environments. Moreover, the study highlights the relevance of the genus Halopseudomonas and especially the novel isolate and its enzymes for future bio-upcycling processes of coated plastic materials.


Assuntos
Ésteres , Uretana , Polietilenotereftalatos/metabolismo , Pseudomonas/metabolismo , Biodegradação Ambiental , Plásticos/química
2.
Microb Biotechnol ; 17(1): e14369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991430

RESUMO

The Halopseudomonas species, formerly classified as Pseudomonas pertucinogena lineage, form a unique phylogenetic branch within the Pseudomonads. Most strains have recently been isolated from challenging habitats including oil- or metal-polluted sites, deep sea, and intertidal zones, suggesting innate resilience to physical and chemical stresses. Despite their comparably small genomes, these bacteria synthesise several biomolecules with biotechnological potential and a role in the degradation of anthropogenic pollutants has been suggested for some Halopseudomonads. Until now, these bacteria are not readily amenable to existing cultivation and cloning methods. We addressed these limitations by selecting four Halopseudomonas strains of particular interest, namely H. aestusnigri, H. bauzanensis, H. litoralis, and H. oceani to establish microbiological and molecular genetic methods. We found that C4 -C10 dicarboxylic acids serve as viable carbon sources in both complex and mineral salt cultivation media. We also developed plasmid DNA transfer protocols and assessed vectors with different origins of replication and promoters inducible with isopropyl-ß-d-thiogalactopyranoside, l-arabinose, and salicylate. Furthermore, we have demonstrated the simultaneous genomic integration of expression cassettes into one and two attTn7 integration sites. Our results provide a valuable toolbox for constructing robust chassis strains and highlight the biotechnological potential of Halopseudomonas strains.


Assuntos
Bactérias , Genômica , Filogenia , Plasmídeos , Biologia Molecular
3.
Microb Biotechnol ; 17(1): e14312, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435812

RESUMO

Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.


Assuntos
Produtos Biológicos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Prodigiosina/metabolismo , Produtos Biológicos/metabolismo , Biotecnologia , Zeaxantinas/metabolismo
4.
Carbohydr Res ; 535: 108991, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065042

RESUMO

We present the isolation and structural characterization of a novel nonionic dirhamnolipid methyl ester produced by the bacterium Burkholderia lata. The structure and the absolute configuration of the isolated dirhamnolipid bearing a symmetrical C14-C14 methyl ester chain were thoroughly investigated through chemical degradation and spectroscopic methods including 1D and 2D NMR analysis, HR-ESI-TOF-MS, chiral GC-MS, and polarimetry. Our work represents the first mention in the literature of a rhamnolipid methyl ester from Burkholderia species.


Assuntos
Burkholderia , Glicolipídeos , Glicolipídeos/química , Burkholderia/química , Cromatografia Gasosa-Espectrometria de Massas , Ésteres/metabolismo
5.
Commun Chem ; 6(1): 193, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697032

RESUMO

Polyethylene terephthalate (PET) is a commodity polymer known to globally contaminate marine and terrestrial environments. Today, around 80 bacterial and fungal PET-active enzymes (PETases) are known, originating from four bacterial and two fungal phyla. In contrast, no archaeal enzyme had been identified to degrade PET. Here we report on the structural and biochemical characterization of PET46 (RLI42440.1), an archaeal promiscuous feruloyl esterase exhibiting degradation activity on semi-crystalline PET powder comparable to IsPETase and LCC (wildtypes), and higher activity on bis-, and mono-(2-hydroxyethyl) terephthalate (BHET and MHET). The enzyme, found by a sequence-based metagenome search, is derived from a non-cultivated, deep-sea Candidatus Bathyarchaeota archaeon. Biochemical characterization demonstrated that PET46 is a promiscuous, heat-adapted hydrolase. Its crystal structure was solved at a resolution of 1.71 Å. It shares the core alpha/beta-hydrolase fold with bacterial PETases, but contains a unique lid common in feruloyl esterases, which is involved in substrate binding. Thus, our study widens the currently known diversity of PET-hydrolyzing enzymes, by demonstrating PET depolymerization by a plant cell wall-degrading esterase.

6.
FEMS Microbes ; 4: xtac030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333445

RESUMO

The expression of biosynthetic genes in bacterial hosts can enable access to high-value compounds, for which appropriate molecular genetic tools are essential. Therefore, we developed a toolbox of modular vectors, which facilitate chromosomal gene integration and expression in Pseudomonas putida KT2440. To this end, we designed an integrative sequence, allowing customisation regarding the modes of integration (random, at attTn7, or into the 16S rRNA gene), promoters, antibiotic resistance markers as well as fluorescent proteins and enzymes as transcription reporters. We thus established a toolbox of vectors carrying integrative sequences, designated as pYT series, of which we present 27 ready-to-use variants along with a set of strains equipped with unique 'landing pads' for directing a pYT interposon into one specific copy of the 16S rRNA gene. We used genes of the well-described violacein biosynthesis as reporter to showcase random Tn5-based chromosomal integration leading to constitutive expression and production of violacein and deoxyviolacein. Deoxyviolacein was likewise produced after gene integration into the 16S rRNA gene of rrn operons. Integration in the attTn7 site was used to characterise the suitability of different inducible promoters and successive strain development for the metabolically challenging production of mono-rhamnolipids. Finally, to establish arcyriaflavin A production in P. putida for the first time, we compared different integration and expression modes, revealing integration at attTn7 and expression with NagR/PnagAa to be most suitable. In summary, the new toolbox can be utilised for the rapid generation of various types of P. putida expression and production strains.

7.
Appl Environ Microbiol ; 88(16): e0112622, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938787

RESUMO

The marine bacterium Alcanivorax borkumensis produces a surface-active glycine-glucolipid during growth with long-chain alkanes. A high-performance liquid chromatography (HPLC) method was developed for absolute quantification. This method is based on the conversion of the glycine-glucolipid to phenacyl esters with subsequent measurement by HPLC with diode array detection (HPLC-DAD). Different molecular species were separated by HPLC and identified as glucosyl-tetra(3-hydroxy-acyl)-glycine with varying numbers of 3-hydroxy-decanoic acid or 3-hydroxy-octanoic acid groups via mass spectrometry. The growth rate of A. borkumensis cells with pyruvate as the sole carbon source was elevated compared to hexadecane as recorded by the increase in cell density as well as oxygen/carbon dioxide transfer rates. The amount of the glycine-glucolipid produced per cell during growth on hexadecane was higher compared with growth on pyruvate. The glycine-glucolipid from pyruvate-grown cells contained considerable amounts of 3-hydroxy-octanoic acid, in contrast to hexadecane-grown cells, which almost exclusively incorporated 3-hydroxy-decanoic acid into the glycine-glucolipid. The predominant proportion of the glycine-glucolipid was found in the cell pellet, while only minute amounts were present in the cell-free supernatant. The glycine-glucolipid isolated from the bacterial cell broth, cell pellet, or cell-free supernatant showed the same structure containing a glycine residue, in contrast to previous reports, which suggested that a glycine-free form of the glucolipid exists which is secreted into the supernatant. In conclusion, the glycine-glucolipid of A. borkumensis is resident to the cell wall and enables the bacterium to bind and solubilize alkanes at the lipid-water interface. IMPORTANCE Alcanivorax borkumensis is one of the most abundant marine bacteria found in areas of oil spills, where it degrades alkanes. The production of a glycine-glucolipid is considered an essential element for alkane degradation. We developed a quantitative method and determined the structure of the A. borkumensis glycine-glucolipid in different fractions of the cultures after growth in various media. Our results show that the amount of the glycine-glucolipid in the cells by far exceeds the amount measured in the supernatant, confirming the proposed cell wall localization. These results support the scenario that the surface hydrophobicity of A. borkumensis cells increases by producing the glycine-glucolipid, allowing the cells to attach to the alkane-water interface and form a biofilm. We found no evidence for a glycine-free form of the glucolipid.


Assuntos
Alcanivoraceae , Glicina , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Parede Celular/metabolismo , Glicina/metabolismo , Ácido Pirúvico/metabolismo , Água/metabolismo
8.
Angew Chem Int Ed Engl ; 61(37): e202207344, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35734849

RESUMO

Engineering dual-function single polypeptide catalysts with two abiotic or biotic catalytic entities (or combinations of both) supporting cascade reactions is becoming an important area of enzyme engineering and catalysis. Herein we present the development of a PluriZyme, TR2 E2 , with efficient native transaminase (kcat : 69.49±1.77 min-1 ) and artificial esterase (kcat : 3908-0.41 min-1 ) activities integrated into a single scaffold, and evaluate its utility in a cascade reaction. TR2 E2 (pHopt : 8.0-9.5; Topt : 60-65 °C) efficiently converts methyl 3-oxo-4-(2,4,5-trifluorophenyl)butanoate into 3-(R)-amino-4-(2,4,5-trifluorophenyl)butanoic acid, a crucial intermediate for the synthesis of antidiabetic drugs. The reaction proceeds through the conversion of the ß-keto ester into the ß-keto acid at the hydrolytic site and subsequently into the ß-amino acid (e.e. >99 %) at the transaminase site. The catalytic power of the TR2 E2 PluriZyme was proven with a set of ß-keto esters, demonstrating the potential of such designs to address bioinspired cascade reactions.


Assuntos
Aminoácidos , Transaminases , Catálise , Esterases , Ésteres/química , Hidrólise
9.
Sci Rep ; 12(1): 2666, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177693

RESUMO

The continuing reports of plastic pollution in various ecosystems highlight the threat posed by the ever-increasing consumption of synthetic polymers. Therefore, Pseudomonas capeferrum TDA1, a strain recently isolated from a plastic dump site, was examined further regarding its ability to degrade polyurethane (PU) compounds. The previously reported degradation pathway for 2,4-toluene diamine, a precursor and degradation intermediate of PU, could be confirmed by RNA-seq in this organism. In addition, different cell fractions of cells grown on a PU oligomer were tested for extracellular hydrolytic activity using a standard assay. Strikingly, purified outer membrane vesicles (OMV) of P. capeferrum TDA1 grown on a PU oligomer showed higher esterase activity than cell pellets. Hydrolases in the OMV fraction possibly involved in extracellular PU degradation were identified by mass spectrometry. On this basis, we propose a model for extracellular degradation of polyester-based PUs by P. capeferrum TDA1 involving the role of OMVs in synthetic polymer degradation.


Assuntos
Fenilenodiaminas/metabolismo , Poliuretanos/metabolismo , Pseudomonas/metabolismo , Biodegradação Ambiental
10.
Adv Biochem Eng Biotechnol ; 181: 17-52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34518910

RESUMO

The isolation and screening of bacteria and fungi for the production of surface-active compounds has been the basis for the majority of the biosurfactants discovered to date. Hence, a wide variety of well-established and relatively simple methods are available for screening, mostly focused on the detection of surface or interfacial activity of the culture supernatant. However, the success of any biodiscovery effort, specifically aiming to access novelty, relies directly on the characteristics being screened for and the uniqueness of the microorganisms being screened. Therefore, given that rather few novel biosurfactant structures have been discovered during the last decade, advanced strategies are now needed to widen access to novel chemistries and properties. In addition, more modern Omics technologies should be considered to the traditional culture-based approaches for biosurfactant discovery. This chapter summarizes the screening methods and strategies typically used for the discovery of biosurfactants and highlights some of the Omics-based approaches that have resulted in the discovery of unique biosurfactants. These studies illustrate the potentially enormous diversity that has yet to be unlocked and how we can begin to tap into these biological resources.


Assuntos
Fungos , Tensoativos , Bactérias/genética , Fungos/genética , Tensoativos/química
11.
Essays Biochem ; 65(2): 319-336, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34223620

RESUMO

Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals.


Assuntos
Pseudomonas putida , Pseudomonas , Vias Biossintéticas , Biotecnologia , Oxirredução , Pseudomonas/genética
12.
FEBS J ; 288(11): 3570-3584, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33342083

RESUMO

Bacterial lipolytic enzymes of family IV are homologs of the mammalian hormone-sensitive lipases (HSL) and have been successfully used for various biotechnological applications. The broad substrate specificity and ability for enantio-, regio-, and stereoselective hydrolysis are remarkable features of enzymes from this class. Many crystal structures are available for esterases and lipases, but structures of enzyme-substrate or enzyme-inhibitor complexes are less frequent although important to understand the molecular basis of enzyme-substrate interaction and to rationalize biochemical enzyme characteristics. Here, we report on the structures of a novel family IV esterase isolated from a metagenomic screen, which shows a broad substrate specificity. We solved the crystal structures in the apo form and with a bound substrate analogue at 1.35 and 1.81 Å resolution, respectively. This enzyme named PtEst1 hydrolyzed more than 60 out 96 structurally different ester substrates thus being substrate promiscuous. Its broad substrate specificity is in accord with a large active site cavity, which is covered by an α-helical cap domain. The substrate analogue methyl 4-methylumbelliferyl hexylphosphonate was rapidly hydrolyzed by the enzyme leading to a complete inactivation caused by covalent binding of phosphinic acid to the catalytic serine. Interestingly, the alcohol leaving group 4-methylumbelliferone was found remaining in the active site cavity, and additionally, a complete inhibitor molecule was found at the cap domain next to the entrance of the substrate tunnel. This unique situation allowed gaining valuable insights into the role of the cap domain for enzyme-substrate interaction of esterases belonging to family IV. DATABASE: Structural data of PtEst1 are available in the worldwide protein data bank (https://www.rcsb.org) under the accession codes: 6Z68 (apo-PtEst1) and 6Z69 (PtEst1-inhibitor complex).


Assuntos
Esterases/ultraestrutura , Lipase/ultraestrutura , Conformação Proteica , Cristalografia por Raios X , Metagenoma/genética , Pseudonocardia/química , Pseudonocardia/genética , Pseudonocardia/ultraestrutura , Especificidade por Substrato/genética
13.
PLoS One ; 15(11): e0242479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33206711

RESUMO

Combining global gridded population and fossil fuel based CO2 emission data at 1 km scale, we investigate the spatial origin of CO2 emissions in relation to the population distribution within countries. We depict the correlations between these two datasets by a quasi-Lorenz curve which enables us to discern the individual contributions of densely and sparsely populated regions to the national CO2 emissions. We observe pronounced country-specific characteristics and quantify them using an indicator resembling the Gini-index. As demonstrated by a robustness test, the Gini-index for each country arise from a compound distribution between the population and emissions which differs among countries. Relating these indices with the degree of socio-economic development measured by per capita Gross Domestic Product (GDP) at purchase power parity, we find a strong negative correlation between the two quantities with a Pearson correlation coefficient of -0.71. More specifically, this implies that in developing countries locations with large population tend to emit relatively more CO2, and in developed countries the opposite tends to be the case. Based on the relation to urban scaling, we discuss the implications for CO2 emissions from cities. Our results show that general statements with regard to the (in)efficiency of large cities should be avoided as it is subject to the socio-economic development of respective countries. Concerning the political relevance, our results suggest a differentiated spatial prioritization in deploying climate change mitigation measures in cities for developed and developing countries.


Assuntos
Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Cidades , Mudança Climática , Países Desenvolvidos , Países em Desenvolvimento , Desenvolvimento Econômico , Combustíveis Fósseis , Produto Interno Bruto
14.
Artigo em Inglês | MEDLINE | ID: mdl-32974305

RESUMO

A large variety of microorganisms produces biosurfactants with the potential for a number of diverse industrial applications. To identify suitable wild-type or engineered production strains, efficient screening methods are needed, allowing for rapid and reliable quantification of biosurfactants in multiple cultures, preferably at high throughput. To this end, we have established a novel and sensitive assay for the quantification of biosurfactants based on the dye Victoria Pure Blue BO (VPBO). The assay allows the colorimetric assessment of biosurfactants directly in culture supernatants and does not require extraction or concentration procedures. Working ranges were determined for precise quantification of different rhamnolipid biosurfactants; titers in culture supernatants of recombinant Pseudomonas putida KT2440 calculated by this assay were confirmed to be the same ranges detected by independent high-performance liquid chromatography (HPLC)-charged aerosol detector (CAD) analyses. The assay was successfully applied for detection of chemically different anionic or non-ionic biosurfactants including mono- and di-rhamnolipids (glycolipids), mannosylerythritol lipids (MELs, glycolipids), 3-(3-hydroxyalkanoyloxy) alkanoic acids (fatty acid conjugates), serrawettin W1 (lipopeptide), and N-acyltyrosine (lipoamino acid). In summary, the VPBO assay offers a broad range of applications including the comparative evaluation of different cultivation conditions and high-throughput screening of biosurfactant-producing microbial strains.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32974309

RESUMO

Rhamnolipids are biosurfactants produced by microorganisms with the potential to replace synthetic compounds with petrochemical origin. To promote industrial use of rhamnolipids, recombinant rhamnolipid production from sugars needs to be intensified. Since this remains challenging, the aim of the presented research is to utilize a multidisciplinary approach to take a step toward developing a sustainable rhamnolipid production process. Here, we developed expression cassettes for stable integration of the rhamnolipid biosynthesis genes into the genome outperformed plasmid-based expression systems. Furthermore, the genetic stability of the production strain was improved by using an inducible promoter. To enhance rhamnolipid synthesis, energy- and/or carbon-consuming traits were removed: mutants negative for the synthesis of the flagellar machinery or the storage polymer PHA showed increased production by 50%. Variation of time of induction resulted in an 18% increase in titers. A scale-up from shake flasks was carried out using a 1-L bioreactor. By recycling of the foam, biomass loss could be minimized and a rhamnolipid titer of up to 1.5 g/L was achieved without using mechanical foam destroyers or antifoaming agents. Subsequent liquid-liquid extraction was optimized by using a suitable minimal medium during fermentation to reduce undesired interphase formation. A technical-scale production process was designed and evaluated by a life-cycle assessment (LCA). Different process chains and their specific environmental impact were examined. It was found that next to biomass supply, the fermentation had the biggest environmental impact. The present work underlines the need for multidisciplinary approaches to address the challenges associated with achieving sustainable production of microbial secondary metabolites. The results are discussed in the context of the challenges of microbial biosurfactant production using hydrophilic substrates on an industrial scale.

17.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32111588

RESUMO

Biocatalysis has emerged as an important tool in synthetic organic chemistry enabling the chemical industry to execute reactions with high regio- or enantioselectivity and under usually mild reaction conditions while avoiding toxic waste. Target substrates and products of reactions catalyzed by carboxylic ester hydrolases are often poorly water soluble and require organic solvents, whereas enzymes are evolved by nature to be active in cells, i.e., in aqueous rather than organic solvents. Therefore, biocatalysts that withstand organic solvents are urgently needed. Current strategies to identify such enzymes rely on laborious tests carried out by incubation in different organic solvents and determination of residual activity. Here, we describe a simple assay useful for screening large libraries of carboxylic ester hydrolases for resistance and activity in water-miscible organic solvents. We have screened a set of 26 enzymes, most of them identified in this study, with four different water-miscible organic solvents. The triglyceride tributyrin was used as a substrate, and fatty acids released by enzymatic hydrolysis were detected by a pH shift indicated by the indicator dye nitrazine yellow. With this strategy, we succeeded in identifying a novel highly organic-solvent-tolerant esterase from Pseudomonas aestusnigri In addition, the newly identified enzymes were tested with sterically demanding substrates, which are common in pharmaceutical intermediates, and two enzymes from Alcanivorax borkumensis were identified which outcompeted the gold standard ester hydrolase CalB from Candida antarcticaIMPORTANCE Major challenges hampering biotechnological applications of esterases include the requirement to accept nonnatural and chemically demanding substrates and the tolerance of the enzymes toward organic solvents which are often required to solubilize such substrates. We describe here a high-throughput screening strategy to identify novel organic-solvent-tolerant carboxylic ester hydrolases (CEs). Among these enzymes, CEs active against water-insoluble bulky substrates were identified. Our results thus contribute to fostering the identification and biotechnological application of CEs.


Assuntos
Alcanivoraceae/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Técnicas de Química Sintética , Pseudomonas/enzimologia , Solventes/química , Ensaios de Triagem em Larga Escala
18.
Front Microbiol ; 11: 114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117139

RESUMO

Biodegradation of synthetic polymers, in particular polyethylene terephthalate (PET), is of great importance, since environmental pollution with PET and other plastics has become a severe global problem. Here, we report on the polyester degrading ability of a novel carboxylic ester hydrolase identified in the genome of the marine hydrocarbonoclastic bacterium Pseudomonas aestusnigri VGXO14 T . The enzyme, designated PE-H, belongs to the type IIa family of PET hydrolytic enzymes as indicated by amino acid sequence homology. It was produced in Escherichia coli, purified and its crystal structure was solved at 1.09 Å resolution representing the first structure of a type IIa PET hydrolytic enzyme. The structure shows a typical α/ß-hydrolase fold and high structural homology to known polyester hydrolases. PET hydrolysis was detected at 30°C with amorphous PET film (PETa), but not with PET film from a commercial PET bottle (PETb). A rational mutagenesis study to improve the PET degrading potential of PE-H yielded variant PE-H (Y250S) which showed improved activity, ultimately also allowing the hydrolysis of PETb. The crystal structure of this variant solved at 1.35 Å resolution allowed to rationalize the improvement of enzymatic activity. A PET oligomer binding model was proposed by molecular docking computations. Our results indicate a significant potential of the marine bacterium P. aestusnigri for PET degradation.

19.
Microb Biotechnol ; 13(1): 19-31, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-29943398

RESUMO

Marine habitats represent a prolific source for molecules of biotechnological interest. In particular, marine bacteria have attracted attention and were successfully exploited for industrial applications. Recently, a group of Pseudomonas species isolated from extreme habitats or living in association with algae or sponges were clustered in the newly established Pseudomonas pertucinogena lineage. Remarkably for the predominantly terrestrial genus Pseudomonas, more than half (9) of currently 16 species within this lineage were isolated from marine or saline habitats. Unlike other Pseudomonas species, they seem to have in common a highly specialized metabolism. Furthermore, the marine members apparently possess the capacity to produce biomolecules of biotechnological interest (e.g. dehalogenases, polyester hydrolases, transaminases). Here, we summarize the knowledge regarding the enzymatic endowment of the marine Pseudomonas pertucinogena bacteria and report on a genomic analysis focusing on the presence of genes encoding esterases, dehalogenases, transaminases and secondary metabolites including carbon storage compounds.


Assuntos
Bactérias , Biotecnologia , Ecossistema , Pseudomonas/genética
20.
Microb Biotechnol ; 13(1): 274-284, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31016871

RESUMO

Hydrolases acting on polyesters like cutin, polycaprolactone or polyethylene terephthalate (PET) are of interest for several biotechnological applications like waste treatment, biocatalysis and sustainable polymer modifications. Recent studies suggest that a large variety of such enzymes are still to be identified and explored in a variety of microorganisms, including bacteria of the genus Pseudomonas. For activity-based screening, methods have been established using agar plates which contain nanoparticles of polycaprolactone or PET prepared by solvent precipitation and evaporation. In this protocol article, we describe a straightforward agar plate-based method using emulsifiable artificial polyesters as substrates, namely Impranil® DLN and liquid polycaprolactone diol (PLD). Thereby, the currently quite narrow set of screening substrates is expanded. We also suggest optional pre-screening with short-chain and middle-chain-length triglycerides as substrates to identify enzymes with lipolytic activity to be further tested for polyesterase activity. We applied these assays to experimentally demonstrate polyesterase activity in bacteria from the P. pertucinogena lineage originating from contaminated soils and diverse marine habitats.


Assuntos
Hidrolases , Pseudomonas , Ágar , Hidrólise , Poliésteres , Polietilenotereftalatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...